All Courses
Digital System Design
Syllabus
Introduction: Introductory concepts, Number System and code, Logic gates and Boolean algebra.
Combinational Logic: Combinational Circuits design using logic gates, universal gates. Minimization of switching functions, algebraic simplification, the Karnaugh map, Prime Implement.
Sequential Logic: NAND and NOR latches. Clocked SR. JK D and T flip-flops. FF timing consideration. Master-slave FF.
Complex Sequential logic: Frequency division and counting troubleshooting. Asynchronous ripple up and down counters, counters with any MOD numbers asynchronous IC counters, propagation delay. Parallel up down and up/down counters. Presentable counters. The 74193 counter. Decoding a counter. Cascading counters. Shift registers, IC shift, digital clock, troubleshooting case studies. MSI logic circuits: BCD-to-Decimal decoders, BCD-to-7 segment decoder/drivers. Encoders.
Multiplexer and Demultiplexer: Multiplexer and their applications, Demultiplexers, Troubleshooting case studies, Analog-to-Digital conversion, digital-ramp, successive approximation, flash ADC, Digital-to-Analog conversion: circuits, specifications, Sample and hold circuits, Analog multiplexers, Data acquisition, digital voltmeter.
Memory Devices: Semiconductor memory technologies ROM architecture timing and type of ROM, EPROM, EEPROM, ROM applications. RAM architecture static and dynamic RAM, DRAM structure operation and refreshing. Expanding word size and capacity. Magnetic bubble and CCD memories trouble shooting case studies. Introduction to sequential circuits, formal representation of sequential circuits.
Arithmetic circuits: The half-adder, full adder, parallel adders, 2’s complement addition and troubleshooting case studies.
Reference Books:
1) Digital Systems: Principles and Applications, Ronald J. Tocci, Neal S. Wildmer.
2) Hand Book of Modern Digital Electronics, G. Moazzam and M. Shorif Uddin.
3) Modern Digital Electronics, R P Jain.
4) An Engineering Approach to Digital Design, William I. Fletcher.
Introduction: Introductory concepts, Number System and code, Logic gates and Boolean algebra.
Combinational Logic: Combinational Circuits design using logic gates, universal gates. Minimization of switching functions, algebraic simplification, the Karnaugh map, Prime Implement.
Sequential Logic: NAND and NOR latches. Clocked SR. JK D and T flip-flops. FF timing consideration. Master-slave FF.
Complex Sequential logic: Frequency division and counting troubleshooting. Asynchronous ripple up and down counters, counters with any MOD numbers asynchronous IC counters, propagation delay. Parallel up down and up/down counters. Presentable counters. The 74193 counter. Decoding a counter. Cascading counters. Shift registers, IC shift, digital clock, troubleshooting case studies. MSI logic circuits: BCD-to-Decimal decoders, BCD-to-7 segment decoder/drivers. Encoders.
Multiplexer and Demultiplexer: Multiplexer and their applications, Demultiplexers, Troubleshooting case studies, Analog-to-Digital conversion, digital-ramp, successive approximation, flash ADC, Digital-to-Analog conversion: circuits, specifications, Sample and hold circuits, Analog multiplexers, Data acquisition, digital voltmeter.
Memory Devices: Semiconductor memory technologies ROM architecture timing and type of ROM, EPROM, EEPROM, ROM applications. RAM architecture static and dynamic RAM, DRAM structure operation and refreshing. Expanding word size and capacity. Magnetic bubble and CCD memories trouble shooting case studies. Introduction to sequential circuits, formal representation of sequential circuits.
Arithmetic circuits: The half-adder, full adder, parallel adders, 2’s complement addition and troubleshooting case studies.
Reference Books:
1) Digital Systems: Principles and Applications, Ronald J. Tocci, Neal S. Wildmer.
2) Hand Book of Modern Digital Electronics, G. Moazzam and M. Shorif Uddin.
3) Modern Digital Electronics, R P Jain.
4) An Engineering Approach to Digital Design, William I. Fletcher.
16 hours 56 minutes
27 steps